

Vishay BCcomponents

265 V PTC Thermistors For Overload Protection

- Wide range of trip and non-trip currents: from 11 mA up to 800 mA for the trip current
- Wide range of resistance: from 2.1 Ω up to 3 k Ω
- Small ratio between trip and non-trip currents (I_t/I_{nt} = 1.5 at 25 °C)
- High maximum inrush current (up to 5.5 A)
- Leaded parts withstand mechanical stresses and vibration
- UL file E148885 according to XGPU standard UL1434
- UL approved PTCs are guaranteed to withstand severe test programs
 - Long-life cycle tests (over 5000 trip cycles)
 - Long-life storage tests (3000 hours at 250 °C)
 - Electrical cycle tests at low ambient temperatures (- 40 °C or 0 °C)
 - Damp-heat and water immersion tests
 - · Overvoltage tests at up to 200 % of rated voltage
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- Telecommunications
- Automotive systems
- Industrial electronics
- Consumer electronics
- Electronic data processing

DESCRIPTION

These directly heated thermistors have a positive temperature coefficient and are primarily intended for overload protection. They consist of a naked disk with two tinned brass or copper clad steel leads and coated. Leadless disks and leaded disks without coating are available on request.

MOUNTING

The PTC Thermistors are suitable for processing on automatic insertion equipment.

Typical soldering

235 °C; duration: 5 s (Pb-bearing) 245 °C, duration: 5 s (Lead (Pb)-free)

Resistance to soldering heat 260 °C, duration: 10 s max

MARKING

Only the grey lacquered thermistors with a diameter of 8.5 to 20.5 mm are marked with BC, R25 value (example 1R9) on one side and I_{nt} , V_{max} on the other side.

QUICK REFERENCE DATA			
PARAMETER	VALUE	UNIT	
Switch temperature	140	°C	
Maximum voltage (RMS)	265	V	
Temperature range	0 to 70	°C	
Climatic category	25/125/56		

R₂₅

± 25 %

(Ω)

3000

1900

1200

500

260

120

85

56

48

29

22

18

17

12

11

8.4

6.6

4.4

4

2.8

2.1

12)

MAX.

at 25 °C

(mA)

80

110

140

200

300

450

550

600

650

800

900

1000

1300

1500

1800

2200

3000

3500

4500

5500

5500

Vishay BCcomponents

I_T

MIN.

at 25 °C

(mA)

17

23

29

42

59

95

115

143

165

210

255

285

315

375

420

480

600

735

855

1050

1200

INT

MAX.

at 25 °C

(mA)

11

15

19

28

39

63

76

95

110

140

170

190

210

250

280

320

400

490

590

700

800

265 V PTC Thermistors For Overload Protection

7.3

7.3

8.3

8.3

9

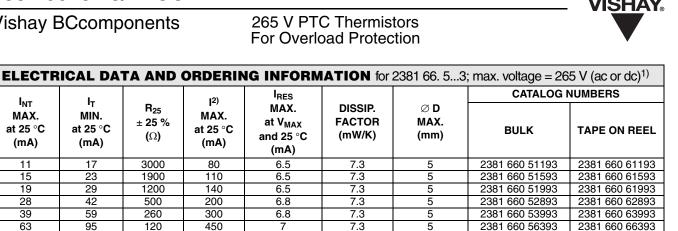
9

10.5

10.5

11.7

11.7


15.5

15.5

19.8

19.8

19.8

2381 660 57693

2381 660 59593

2381 661 51113

2381 661 51413

2381 661 51713

2381 661 51913

2381 662 52113

2381 662 52513

2381 662 52813

2381 662 53213

2381 663 54013

2381 663 54913

2381 664 55913

2381 664 57013

2381 664 58013³⁾

2381 660 67693

2381 660 69593

2381 661 61113

2381 661 61413

2381 661 61713

2381 661 61913

2381 662 62113

2381 662 62513

2381 662 62813

2381 662 63213

-

5

5

7

8.5

8.5

10.5

10.5

12.5

12.5

16.5

16.5

20.5

20.5

20.5

Notes

1. The thermistors are clamped at the seating plane.

Imax is the maximum overload current that may flow through the PTC when it passes from the low ohmic to the high ohmic state. 2.

7

7

7.5

8

9

9.5

10

11

12

13

15

16

19.5

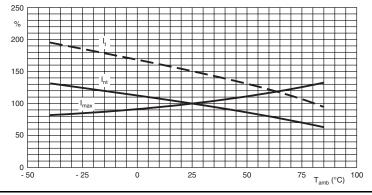
21

22.5

UL approval: Imax * 0.75

3. Not UL approved.

CAD AND 40NO DADT NUMPEDO

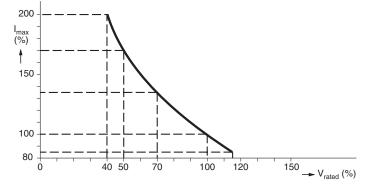

SAP AND 12NC PART NUMBERS			
12NC	SAP CODING	12NC	SAP CODING
2381 660 x1193	PTCCL05H110HyE	2381 661 x1913	PTCCL09H191HyE
2381 660 x1593	PTCCL05H150HyE	2381 662 x2113	PTCCL11H211HyE
2381 660 x1993	PTCCL05H190HyE	2381 662 x2513	PTCCL11H251HyE
2381 660 x2893	PTCCL05H280HyE	2381 662 x2813	PTCCL13H281HyE
2381 660 x3993	PTCCL05H390HyE	2381 662 x3213	PTCCL13H321HyE
2381 660 x6393	PTCCL05H630HyE	2381 663 54013	PTCCL17H401HBE
2381 660 x7693	PTCCL05H760HyE	2381 663 54913	PTCCL17H491HBE
2381 660 x9593	PTCCL05H950HyE	2381 664 55913	PTCCL21H591HBE
2381 661 x1113	PTCCL07H111HyE	2381 664 57013	PTCCL21H701HBE
2381 661 x1413	PTCCL07H141HyE	2381 664 58013	PTCCL21H801HBE
2381 661 x1713	PTCCL09H171HyE		

Notes

For bulk parts replace x by "5" and y by "B".

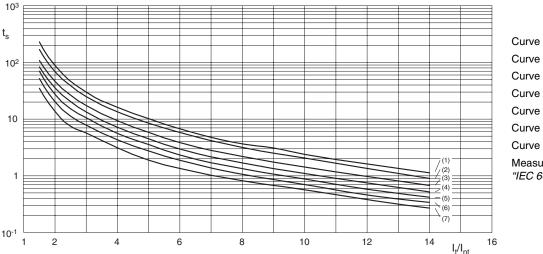
For taped on reel parts replace it x by "6" and y by "T".

CURRENT DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE



265 V PTC Thermistors For Overload Protection

Vishay BCcomponents


ELECTRICAL CHARACTERISTICS I_{MAX} As a function of voltage

I_{max} as stated in the Electrical data and ordering information tables, is the maximum overload current that may flow through the PTC when passing from the low ohmic to high ohmic state at rated voltage.

When other voltages are present after tripping, the I_{max} value can be derived from the above I_{max} as a function of voltage graph. Voltages below V_{rated} will allow higher overload currents to pass the PTC.

TYPICAL TRIP-TIME AS A FUNCTION OF TRIP CURRENT RATIO

 $\begin{array}{l} \text{Curve 1:} \oslash D_{max} = 20.5 \text{ mm} \\ \text{Curve 2:} \oslash D_{max} = 16.5 \text{ mm} \\ \text{Curve 3:} \oslash D_{max} = 12.5 \text{ mm} \\ \text{Curve 4:} \oslash D_{max} = 10.5 \text{ mm} \\ \text{Curve 5:} \oslash D_{max} = 8.5 \text{ mm} \\ \text{Curve 5:} \oslash D_{max} = 7.0 \text{ mm} \\ \text{Curve 6:} \oslash D_{max} = 5.0 \text{ mm} \\ \text{Measured in accordance with} \\ ``IEC 60738''. \end{array}$

Trip-time or switching time (t_s)

To check the trip-time for a specific PTC, refer to the Electrical Data and Ordering Information tables for the value I_{nt} . Divide the overload or trip current by this I_{nt} and you realize the factor I_t/I_{nt} . This rule is valid for any ambient temperature between 0 and 70 °C. Adapt the correct non-trip current with the appropriate curve in the Current Deviation as a Function of the Ambient Temperature graph. The relationship between the I_t/I_{nt} factor and the switching time is a function of the PTC diameter; see the above graphs.

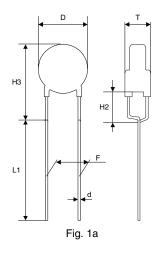
Example

What will be the trip-time at I_{ol} = 0.8 A and T_{amb} = 50 °C of a thermistor type 2381 661 51713; 22 Ω ; Ø D_{max} = 8.5 mm:

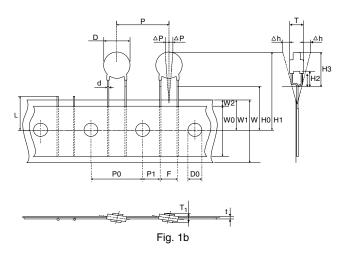
 I_{nt} from the table: 170 mA at 25 °C

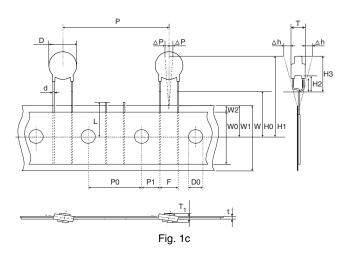
 I_{nt} : 170 x 0.87 = 148 mA (at 50 °C).

Overload current = 0.8 A; factor I_t/I_{nt} : ^{0.8}/_{0.148} = 5.40. In the typical trip-time as a function of trip current ratio graph, at the 8.5 mm line and I_t/I_{nt} = 5.40, the typical trip-time is 3.0 s.


Vishay BCcomponents

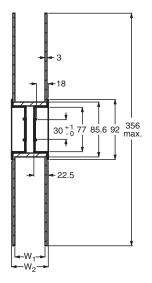
265 V PTC Thermistors For Overload Protection




COMPONENTS OUTLINE			
COD	E NUMBER 2381	S.P.Q	OUTLINE
660	53	500	Fig. 1a
000	63	1500	Fig. 1b
661	53	250	Fig. 1a
	63	1500	Fig. 1b
	53	200	Fig. 1a
662	62113 - 62513	1500	Fig. 1b
	62813 - 63213	750	Fig. 1c
663	53	100	Fig. 1a
664	53	50	Fig. 1a

PTC THERMISTORS IN BULK

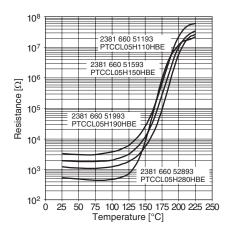
PTC THERMISTORS ON TAPE ON REEL



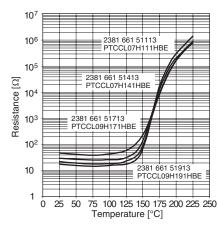
265 V PTC Thermistors For Overload Protection Vishay BCcomponents

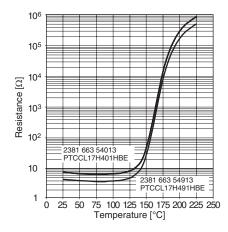
TAPE AND REEL ACCORDING TO IEC 60286-2 dimensions in millimeters				
SYMBOL	PARAMETER	DIMENSIONS	TOLERANCE	REMARKS
D	Body diameter	See table	max.	
d	Lead diameter	0.6	± 10 %	
D0	Feed hole diameter	4.0	± 0.2	
Р	Pitch of components			
	Diameter < 12 mm	12.7	± 1.0	
	Diameter ≥ 12 mm	25.4	± 2.0	
P0	Feed hole pitch	12.7	± 0.3	Cumulative pitch error ± 1 mm/20 pitches
P1	Feed hole center to lead center	3.81	± 0.7	guaranteed between component and tape
Δp	Component alignment	0	± 1.3	
F	Leadcenter to leadcenter distance	5.0	+ 0.6	Guaranteed between
			- 0.1	component and tape
H0	Lead wire clinch height	16.0	± 0.5	
H2	Component bottom to seating plane	4.0	± 1.0	
H3	Component top to seating plane	D + 5	max.	
H4	Seating plane difference (left-right lead)	0	± 0.2	
Δh	Component alignment	0	± 2.0	
L1	Lead length	20	min.	
W	Tape width	18	+ 1/- 0.5	
WO	Hold down tape width	9.0	min.	
W1	Hole Position	9.0	± 0.5	
W2	Hold down tape position	3.0	max.	
Т	Total thinkness	5.5	max.	
t	Total tape thickness	0.9	max.	With cardboard tape $0.5 \pm 0.1 \text{ mm}$

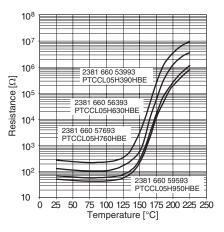
REEL SPECIFICATIONS in millimeters

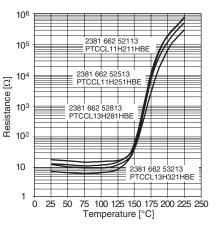

REEL DIMENSIONS in millimeters		
DIAMETER Ø	W ₁	W ₂ MAX.
< 12	42 ± 1	56
12	46 ± 1	60

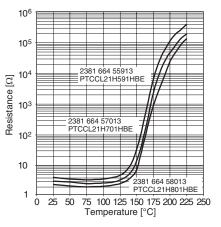
Vishay BCcomponents


265 V PTC Thermistors For Overload Protection


TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.